Level Eulerian Posets

نویسندگان

  • Richard Ehrenborg
  • Gábor Hetyei
  • Margaret Readdy
چکیده

The notion of level posets is introduced. This class of infinite posets has the property that between every two adjacent ranks the same bipartite graph occurs. When the adjacency matrix is indecomposable, we determine the length of the longest interval one needs to check to verify Eulerianness. Furthermore, we show that every level Eulerian poset associated to an indecomposable matrix has even order. A condition for verifying shellability is introduced and is automated using the algebra of walks. Applying the Skolem–Mahler–Lech theorem, the ab-series of a level poset is shown to be a rational generating function in the non-commutative variables a and b. In the case the poset is also Eulerian, the analogous result holds for the cd-series. Using coalgebraic techniques a method is developed to recognize the cd-series matrix of a level Eulerian poset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flag Vectors of Eulerian Partially Ordered Sets

The closed cone of flag vectors of Eulerian partially ordered sets is studied. It is completely determined up through rank seven. HalfEulerian posets are defined. Certain limit posets of Billera and Hetyei are half-Eulerian; they give rise to extreme rays of the cone for Eulerian posets. A new family of linear inequalities valid for flag vectors of Eulerian posets is given.

متن کامل

Finite Eulerian posets which are binomial or Sheffer

In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of posets are related to the theory of generating functions and to geometry. The results of this paper are organized as follows: (1) We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify factorial functions of Eulerian binomial posets; (2...

متن کامل

k-Eulerian Posets

A poset P is called k-Eulerian if every interval of rank k is Eulerian. The class of k-Eulerian posets interpolates between graded posets and Eulerian posets. It is a straightforward observation that a 2k-Eulerian poset is also (2k+1)-Eulerian. We prove that the ab-index of a (2k+1)Eulerian poset can be expressed in terms of c = a + b, d = ab + ba and e2k+1 = (a − b)2k+1. The proof relies upon ...

متن کامل

Characterization of the factorial functions of Eulerian binomial and Sheffer posets

We completely characterize the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n) = n! has...

متن کامل

Classification of the factorial functions of Eulerian binomial and Sheffer posets

We give a complete classification of the factorial functions of Eulerian binomial posets. The factorial function B(n) either coincides with n!, the factorial function of the infinite Boolean algebra, or 2n−1, the factorial function of the infinite butterfly poset. We also classify the factorial functions for Eulerian Sheffer posets. An Eulerian Sheffer poset with binomial factorial function B(n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2013